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The contingent negative variation (CNV): timing isn’t
everything
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When participants time intervals ranging from several hundred

milliseconds to several seconds a negative polarity waveform,

known as the contingent negative variation (CNV), manifests in

the ongoing electroencephalogram (EEG). The perceptual and

cognitive functions underlying this component are subject to

ongoing debate. Moreover, recent evidence suggests that the

link between the CNV and behavioral performance is non-linear

and changes depending on the cognitive context. We suggest

that the CNV reflects a common core preparatory process

related to brain system optimization, and other cognitive

processes that depend on the specific timing task employed.
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Contingent negative variation overview
When an action or stimulus is contingent on a preceding
stimulus, the initial stimulus elicits a slow negative de-
flection in the scalp-recorded electroencephalogram
(EEG). This voltage change, called the contingent nega-
tive variation (CNV), has a fronto-central scalp distribu-
tion and normally resolves to baseline when the action or
second stimulus occurs. The CNV was first reported by
Walter and colleagues ([1], for a brief review in timing
contexts, see [2]), who associated it with expectancy and
anticipation. Since then, the CNV has been linked to
various cognitive and psychophysiological processes ([3];
see Box 1, ‘Current status of the field’). Early studies
associated the CNV time course to the length of the
timed interval [4] and the CNV amplitude to timing
accuracy [5]. Subsequently, Macar [6–8], Pouthas

[9,10], and their colleagues interpreted the CNV slope
and amplitude as a correlate of the temporal accumula-
tion process proposed in scalar timing theory (STT; [11]).
STT posits that an accumulator integrates pulses emit-
ted by a pacemaker, which is a core idea of many models
of interval timing [11–13].

Interestingly, certain features of the CNV depend on the
specific timing paradigm used. Explicit interval timing
tasks can be classified into two broad groups: motor timing
and perceptual timing [17]. Motor timing requires the
participant to make a motor response demarcating the
target interval. For example, the participant may press a
response button to terminate a stimulus and indicate that
it has been presented for the appropriate amount of time.
Perceptual timing requires the participant to make a
judgment about the duration of one or more stimuli,
but the motor response itself does not affect or represent
the target duration. This simple idea is depicted in
Figure 1, which also introduces psychological concepts
that have been linked to perceptual and motor timing. In
the following, we discuss links between these psycholog-
ical concepts and the CNV in the context of interval
timing.

CNV in motor timing
Macar and colleagues [8] proposed that trial-to-trial fluc-
tuations in subjective timing are driven by variations in
the current state of the accumulator. To test this idea,
Macar et al. [8] asked participants to produce a 2.5 s
standard duration learned earlier by pressing a response
button twice. Trials were post hoc categorized into three
groups: ‘short’ productions (2.2–2.4 s), ‘correct’ produc-
tions (2.4–2.6 s), and ‘long’ productions (2.6–2.8 s). The
CNV measured at the FCz electrode, which is typically
assumed to measure activity in the SMA when spatial
filtering is applied, was largest in the long condition, and
smallest in the short condition, with the correct category
in between. The positive correlation between produced
duration and CNV amplitude was taken as strong evi-
dence that the subjectively experienced interval is direct-
ly linked with the amplitude of the CNV. However, more
recently other researchers [18] failed to find any covaria-
tion between CNV amplitude and duration (also see
[19,20]). Instead, they showed a decrease in CNV ampli-
tude over the course of the experiment. This apparent
habituation effect contrasts with the assumption that the
CNV reflects a stable accumulation process and is incon-
sistent with the temporal accumulation hypothesis (also
see [21!!]). This and other recent work demonstrates that
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the interpretation of the CNV from a temporal processing
perspective is far from settled [21!!,22!,23,24!,25!!,26].

SMA activation precedes voluntary movements [28],
which suggests that the CNV originating from the SMA
in time production tasks may reflect motor preparation
[29]. For example, Kononowicz, Sander, and Van Rijn
([30]; also see [31]) asked participants to reproduce dura-
tions of 2 s, 3 s and 4 s. The CNV amplitude was larger for
the 2 s duration than for the 3 s and 4 s durations. Addi-
tionally, larger CNV amplitude was associated with shorter
reproduced durations across subjects in all three duration
conditions. Although these results are at odds with larger
CNV amplitudes reflecting larger temporal accumulations,
they are consistent with CNV amplitude reflecting

preparation for action, at least when participants produce
or reproduce temporal intervals [26]. Other studies identi-
fied another pattern of neural activity as a ramp up that
reaches a plateau [19,32] or a decline that is difficult to
reconcile with the idea of temporal accumulation [33,34].
Nevertheless, it is noteworthy that the CNV signal results
from synchronization of massive neuronal populations that
can exhibit different climbing patterns (for review, see
[35!]). Specifically, the spiking patterns of single cells were
classified into four groups: motor cells, relative timing cells,
absolute timing cells, and time accumulator cells, which
demonstrates that the CNV can be a gross product of these
neural populations [36].

Hence, although a single specific function is often as-
cribed to the CNV, it may be a composite of several
processes [37] that result in the signal reflecting the
decision to take an action. Of course, in motor timing a
preparatory component related to the activation of motor
circuits inevitably will be present in the neuronal activity
and may dominate the overall pattern. Hence, perceptual
discrimination timing tasks are often employed to limit
the contribution of motor related activity to the CNV.

CNV in perceptual timing
A CNV also occurs when participants are asked to judge
duration in the absence of a motor response [1], such as a
comparison of a current time interval to a remembered
standard time interval. Moreover, the CNV amplitude is
typically larger for temporal discrimination than for other
types of perceptual discrimination task [38] and increases
as a function of attention paid to the timing task [39!!].
However, the most Q2remarkable finding depicted in
Figure 2 is that the CNV deflects approximately when
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Summary of a common classification of explicit timing including
associated tasks (green) and the processes attributed to them (brown).

Box 1 Current status of the field.

- The CNV is strongly associated with perceptual and motor timing.
- Multiple brain areas contribute to the global CNV signal.
- The CNV peak in perceptual timing reflects duration of a standard

interval stored in working memory.
- Preparation and anticipation are omnipresent cognitive compo-

nents of the CNV.
- Other components predict subjective time better than the CNV,

both in perceptual (N1P2) and motor (beta power) paradigms.

Figure 2
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Illustration of the typical development of the CNV when participants
are asked to compare a remembered interval to a currently presented
interval. Note the CNV resolution at the expected offset time of the
standard interval.
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the response switches from one category to another (e.g.
‘short’ to ‘long’ [40,41]).

The CNV deflection point could reflect a decision vari-
able for when the current interval has exceeded the
standard interval (SI) criterion, if one assumes a fixed
threshold for this decision [26]. The same CNV effect also
can be interpreted as a memory representation of the
standard interval [40] Unfortunately, the literature does
not adjudicate between these two proposals. Moreover,
recent work indicates that other ERP components are
related to interval timing processes. For example, Kono-
nowicz and Van Rijn [42] showed that the N1P2 ampli-
tude evoked by the offset of the comparison interval (CI)
increases as a function of the temporal distance from the
SI. Additionally, the latency of the P2 component follows
the hazard rate of the CIs such that the P2 latency
decreases as the probability of interval offset increases.
In other words, P2 latency was shortest for the longest
durations indicating that timing processes continue after
the resolution of the CNV (c.f.; [43,44!!]). This result
suggests that timing information is available after the SI
has elapsed, which indirectly implies that the CNV is
involved in coding for a general decision variable.

Recent work by Wiener and Thompson [45!!] explicitly
investigated how memory and decision factors contribute
to the CNV. These authors asked participants to classify
durations into short and long categories. Importantly, they
used a first-order counterbalanced sequence, which per-
mitted examination of the effect of classification of dura-
tion N " 1 on duration N. In line with the idea that the
CNV reflects decisional and memory factors, when the
preceding interval was objectively long the CNV
deflected later and the current interval was more likely
to be judged as short. The second effect demonstrated by
Wiener and Thompson [45!!] was repetition enhance-
ment, meaning that the CNV was more negative the
smaller the temporal distance between adjacent stimuli,
with the largest negativity when the same duration was
repeated. If the CNV reflected a purely temporal accu-
mulation process, it would not be affected by the preced-
ing trials. To summarize, recent studies mainly suggest
that decisional and memory mechanisms influence the
CNV.

CNV reflects resource optimization and
preparation
Compelling evidence that the interval timing CNV is
related to preparation and expectation has been provided
by Ng, Tobin, and Penney ([19]; also see [32]). These
authors used a duration bisection paradigm in which
subjects categorized probe durations as more similar to
a short or long anchor. Ng et al. [19] observed a negative
deflection that started at the onset of the probe duration.
However, the CNV plateaued at the duration value of the
short anchor and remained stable until the geometric

mean of the anchor durations or stimulus offset, which-
ever came first, when it resolved. This result can be seen
as reflecting maintenance of neuronal assemblies in a
state that enables efficient action/perception.

Besides preparation for an upcoming event, the CNV has
been linked to other processes such as motor preparation
[46], expectation, and anticipation [47–49]. However, the
common core concept for these three processes is re-
source optimization, which is linked to the more physio-
logically grounded concept of excitability. Initially, work
by Elbert ([31], also see [50]) showed that there is a link
between detection of visual stimuli and the amplitude of
the CNV such that low amplitude corresponds to misses,
and high amplitude corresponds to false alarms. This link
between detection performance and negativity of the
CNV is in line with results showing that the CNV
amplitude preceding the start of a trial is higher when
participants are cued to respond as fast as possible [51].
Taken together these results suggest that larger CNV
amplitude corresponds to larger disinhibition in sensori-
motor circuits.

However, the relationship between slow ERP compo-
nents, like the CNV, and behavioral performance may not
be linear. He and Zempel [52!] showed a U-shaped
relationship between response speed and electrocortico-
graphic signals such that reaction times were fastest when
the amplitude of the slow wave was closest to the average.
A U-shaped relationship has also been reported between
movement speed and neuronal firing in the premotor
cortex [53]. A similar effect may be present in interval
timing, where, in at least some tasks, movement speed
and timing accuracy are linked. The hypothesis of re-
source optimization suggests that the efficiency of behav-
ioral performance should be related to decreased neuronal
variability across trials. Such a decrease across trials could
give rise to enhanced CNV amplitude. Interestingly,
Gontier et al. [54!] showed that larger CNV amplitude
was related to better behavioral performance when parti-
cipants were asked to judge durations marked by auditory
or visual signals as ‘short’ or ‘long’.

Together these results suggest that there are multiple
mechanisms relating slow ERP components and behav-
ior. The first mechanism, which predicts a linear function
between neuronal activity and response speed, is based
on the idea of accumulation to threshold. For example,
release of inhibition in cortico-striatal loops would lead to
lower response caution and faster accumulation towards
threshold [55] as depicted in Figure 3a. The second
mechanism is based on the idea that the brain settles
in an optimal state for performance, termed an optimal
subspace of firing rates [53] as depicted in Figure 3b.
Observations of neuronal population dynamics in mon-
keys [56] indicated that production of short and long time
intervals was associated with approximately the same
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direction and the same converging point in multidimen-
sional space. However, short and long categories deviated
from each other on the way to the convergence point (see
dashed and solid lines in Figure 3b, which depict short

and long trials, respectively). Note that in Figure 3b (also
see [56]) the overall population state is driven towards
higher firing rates, which explains a global potential in-
crease as measured by the CNV. Additionally, the idea of
spatial coding of time [57] is represented by the color coded
grid in Figure 3b. Within this framework, spatially segre-
gated neuronal populations [58] can differentially express
temporal durations, presumably giving rise to non-linear
patterns covarying with subjective time. In other words,
the CNV could result from a mixture of these two process-
es, where climbing activity reflects a search for the optimal
configuration of neuronal firing. Moreover, the state de-
pendent networks model, which is based on the idea that
time can be encoded as a trajectory in the multidimensional
space of a recurrent neural network, can be trained in a way
that it will exhibit a linear ramp [59,60], suggesting that
climbing activity can be reconciled with the idea of coding
time in an optimal neuronal subspace.

In sum, the CNV could reflect the process of controlling the
brain’s excitability in preparation for an upcoming internal
or external stimulus [31]. In other words, the CNV can be
interpreted as a marker of resource optimization through
alternating levels of excitability. However, more complex
processes could contribute to the CNV. Therefore, depen-
dencies between timing, anticipation and preparation pro-
cesses and CNV features have to be established.

CNV and oscillations
An old idea in the timing literature is that alpha oscilla-
tions provide clock pulses [61] or reflect fluctuations of
attention giving rise to the subjective estimate of time.
However, neither of these ideas has received much
support ([62]; c.f. [19]). Moreover, in spite of newer
results showing EEG power modulation in timing tasks
the importance of EEG oscillations in interval timing and
their link to the CNV remains elusive. In the following,
we briefly review some of the relevant findings.

Gamma power increased over fronto-central and parietal
regions when participants attended to duration as com-
pared to stimulus intensity [63], suggesting a functional
role of gamma in attention to time. It is important to note
that this effect is distinct from the typical optimization of
attention in time involving alpha and theta oscillations
[64,65]. Gamma originating from the left inferior frontal
cortex has also been implicated in auditory temporal per-
ception learning [66] because gamma band power in the
auditory cortex and in the left inferior frontal gyrus
increases after temporal modulation rate training. More-
over, the gamma peak is correlated with auditory duration
magnitude [67]. Interestingly, gamma and beta power
modulations covary with beat processing [68,69]. For
example, Fujioka et al. [69] showed that beta oscillations
predict the occurrence of subsequent stimuli in a rhythmic
sequence. However, another possibility is that these beta
effects reflect involvement of the motor system in timing,

4 Timing behavior
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Two theoretical approaches to preparation and duration coding. (a)
The first approach proposes that activity has to reach a certain level
for a movement to be triggered. (b) The second approach is based on
the idea of optimization and proposes that preparation relies on a
search through the state space for an optimal configuration of
neuronal firing. We have labeled the three axes as dimensions
because they could refer to specific components of neuronal firing,
but they could also refer to more global signals measured with EEG/
MEG. The solid and dashed traces depict the short and long
produced intervals because the production of short and long time
intervals is associated with similar paths in multidimensional space
[56]. However, short and long categories deviate from each other
before arriving at the same destination point. Different grid colors
illustrate the idea that spatially segregated neuronal populations
express different directories through multidimensional space. Note that
spatially segregated populations could also code for different
durations.
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as has been shown in a synchronization-continuation task
[68]. Importantly, any oscillatory effect should be carefully
interpreted in light of the specific paradigm employed.
Whereas previous studies used cortical entrainment to
drive modulations of beta amplitude [68,69], a recent
suprasecond interval-timing study, in which participants
initiated to-be-timed intervals spontaneously, showed that
motor related post-movement beta synchronization pre-
dicted the length of the current temporal interval [62].
Hence, the nature of this beta effect could be different than
in the studies using entrainment paradigms. Interestingly,
analysis of the same data at the same electrode location
(FCz) failed to reveal a relationship between CNV ampli-
tude and produced duration [18]. Although CNV and beta
oscillations correlate in a continuous performance task [70]
showing preparedness of the motor system to react quickly,
other results [18,62] suggest that these two measures reflect
functionally and neurophysiologically distinct mecha-
nisms. Indeed, earlier work claimed that the CNV reflects
synchronization of post-synaptic potentials in pyramidal
cells [71] and beta oscillations primarily reflect action of
populations of interneurons [72].

Despite this recently emerging evidence of beta oscilla-
tions in timing, a long standing conjecture proposes that
variations in speed and power of alpha oscillations should
be involved in coding of temporal intervals (see [73] for a
review). Indeed, there is a substantial body of evidence
that alpha rhythm strongly contributes to implicit timing
by facilitation of sensory processing (e.g. [65]). However,
the role of alpha oscillations in explicit timing is far from
clear [19,58]. Therefore, it remains to be established
whether alpha oscillations serve as a substrate of internal
clock [73] or contribute to working memory processes in
interval timing [15].

Recent work suggests that alpha oscillations may contrib-
ute to the evolution of slow evoked components. Although
oscillatory activity is viewed as being symmetric around
zero, the peaks of alpha oscillation can be modulated
more strongly than the troughs [74] and if averaged over
multiple trials alpha may cause a shift in slow compo-
nents such as the CNV. Therefore, contributions of this
less conventional neuronal mechanism to the CNV
should be considered together with conventional explora-
tions of oscillatory power.

In sum, there is emerging evidence that beta oscillations
carry temporal information in motor timing or at least that
beta interacts with timing mechanisms. However, the
specific contribution of alpha, beta, and other frequency
bands to perceptual timing remains an open question.

Dopaminergic modulations of the CNV
Interestingly, both CNV [75] and beta oscillations [76] are
modulated by impairments of L-Dopa and studies in ani-
mals have shown that alterations of dopamine modulate the

strength of ramping activity [77,78]. Interestingly, brain
structures that are affected by dopaminergic modulations
correspond to the key anatomical components implicated
in the SBF model ([79], also see [80!]), which proposes that
a set of pre-frontal cortex neurons oscillate at various
frequencies in the prefrontal cortex. At the onset of an
interval, these oscillators are phase-reset and at the offset of
the interval the unique pattern of the cortical oscillators is
decoded by medium spiny neurons in the striatum that
work as coincidence detectors [81]. Given the crucial role
of dopamine in the SBF model the links between the SBF,
CNV and beta oscillations warrant further investigation.

Conclusion
The contradictory CNV results in motor timing ([8]; c.f.
[18,30]) and perceptual timing [22!,25!!,42] may stem
from the fact that various processes contribute to the
CNV at the scalp level. Thus, the future challenge lies in
an appropriate unmixing of these signals and attribution
to specific perceptual and cognitive processes (see Box 2,
‘Future directions and outstanding questions’).
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